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INTRODUCTION 

With the investigation of many problems in the mechanics of continuous media, geophys- 
ics, etc., for the mathematical closure of the problems under consideration there are needed 
equations ofstate of the continuous media, describing their thermodynamic properties in a 
wide region of states, including the crystalline, molten, vaporized, dissociated, and ion- 
ized states. In [1-3], methods are developed for the construction of interpolational equa- 
tions of state, taking in the above regions, with the exception of the region of melting. For 
a number of substances, the melting process has a considerable energy consumption and cannot 
be neglected in applied calculations. The present article, using the example of NaCI, de- 
velops the basic concepts of [I, 2] and constructs an equation of state which takes account 
of all the abovementioned processes, including melting. 

The principal difficulty in the way of constructing interpolational equations of state 
of this type is an adequate determination of the characteristic parameters in the supporting 
models of the medium [1-3] and in the interpolational functions. These difficulties are ag- 
gravated by the insignificant volume of experimental data on the thermodynamic properties 
of solid media. In the present article methods are developed for determining these parame- 
ters from the existing experimental data. 

The description of melting processes requires the equations of state of the crystalline 
phase and the melt. 

i. Equation of State of the Crystalline Phase of NaCI 

For description of the crystalline state we use a known model of an ionic crystal [4], 
assuming that all the atoms vibrate with an identical frequency characterized by the Debye 
temperature O D. Then, on the basis of the Debye model [4], we obtain 

6R yPOD �9 (i. I) 
P = P c  (v)+ M e e o / ~ _ i '  

6 ~  OO �9 (i. 2) 
E = Ec(v ) + ~ oeDl ~_ , 

E c =  -- .f PC (v) dr, 
~k 

(i. 3) 

where PC and E C are the pressure and the energy of the cold state; M is the molecular weight; 
R is the gas constant; T is the temperature; v is the specific volume; v k is the specific 
volume at T = 0; and y is the Gr~neisen coefficient. Under these circumstances, the follow- 
ing well-known relationship holds; 

where Oo is the Debye temperature at normal density Po. 
for a description of the state of the crystalline phase, we must determine y(p), 8o,andpc(~). 

(!.4) 

From (I.i)-(i.4) it follows that 
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It is known in [5] that the known schemes for a theoretical determination of the Grflnei- 
sen coefficient (the Landau--Slater, Dugdale--McDonald, r and "free volume" approximations) lead 
to considerable errors. Therefore, in the present work the dependence y(p) was constructed 
on the basis of known thermodynamic identities [6] connecting the GrUneisen coefficient with 
the isobaric heat capacity, the modulus of volumetric compression, and the coefficient of 
thermal expansion. The data on these parameters were taken from [7, 8]. They took in a 
range of change in the density (1.9-2.2). It is well known [9] that the following rela- 
tionship holds in the vicinity of po: 

y = ?(po)Po/p, 

In limiting cases 

2 
lira ?= -~-. 

On the basis of these data, the interpolational dependence was constructed: 

2 .a- 4"I2PS 
V = T, p,-~i-~6' (1.5) 

where p is in g/cm 3. 

From (1.4) and (1.5) we obtain 

8D = @0 (PIP0) 2/~ exp [ i .92  
[ 

i'~ (P2- ] 
arctg i.t6q-po2p ~. I ' (1.6) 

where it is assumed that 8o = 300~ (see, for example, [5, 6]). 

The pressure of cold compression was determined in two steps. In the region of elonga- 
tions it was represented analogously [I, 2] in the form 

p c  = A ( 6  m - -  6 n) ~r  6 = p/pk < I. (1 .7 )  

The parameters A, m, and Ok were calculated on the basis of the known volumetric veloc- 
ity of sound co(po, To) = 3.33 km/sec, energy of sublimation Qs = 3.94"I01~ ergs/g [7], and 
the equality (i.i) for p = po, T = To, and p = po. The value of n was selected on the basis 
of the best agreement between the experimental data of [8] on p(T) for p = Po and calculated 
data, computed from (i.i) and (1.7). As a result we obtain A = 13.1-10 I~ dyn/cm 2, Pk = 2.206 
g/cm s, m = 4, and n = 2. 

In the region of compression, PC was determined using experimental data on the dynamic 
compressibility [10-13] and the Thomas--Fermi cold model of an atom for large degrees of com- 
pression. The results of the calculations are given in Table I. 

Thus, the relationships (i.i)-(1.3), (1.5)-(1.7), and Table 1 completely determine the 
state of the crystalline phase. A comparison of the isobaric heat capacities, calculated 
on the basis of this equation of state and the data of [7], shows their good agreement. 

2. Equation of State of the Melt 

The equation of state of the melt must assure the subsequent transition of the substance 
into the vaporized, dissociated, and ionized states. Therefore, to construct it we use the 
approach of [1-3]. In terms of the free energies, we represent the interpolatlonal equation 
of state of the melt in the form 

(2 .1)  

where 

6RT In (1 - - e  -eD/r )  ,-k F,  Fc= Qo + (2.2) 

for the condensed phase. 
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TABLE i 

p, g/cm S 2,27 2,38 2,60 ] 3,03 

t 
3,46 __3'89 4,33 I 4,56 5,19 t 5,62 

1,82 I 2,09 

In (2.2), along with the cold and hot components of the state, there are included the 
component of the thermal excitation of the electrons F e and the energy Qo, equal to the dif- 
ference in the sublimation energies of the crystalline and liquid phases, which has the nom- 
inal meaning of the melting energy at T = 0 [2]. In (2.1), z: and z= for the free energy 
of the condensed state go over consecutively into the free energies of the vaporized (Fg) 
and dissociated (F d) states [4, 6]: 

Fg = Ec-?  Oo "~ 7i" ln L ~ ~ l e--ff T: _ - -  -'7i7 " In ze~ +" Fe' 

�9 trIT { hZN2/3 )a RT / " 
Fd E C +  Qo q-, ~ In ~ 2"~"i/2~l12"3/2"2J3z'~""~ "'3 ~ ~ , , .  ,) -- liT_ In ~ze,ze,) q- F~, 

(2 .3 )  

where h and k are the Planck and Boltzmann constants; m i and Zei(i = i, 2, 3) are the masses 

of the particles and the electronic statistical sums, respectively, for NaCI, Na, and CI; 
0 = 0.314*K and 01 = 525=K arethetemperatures characterizingthe rotationof themolecule and the 
r 
vibrations of the atoms in the molecule; and N is the number of particles in the volume v. 

Examining consecutively the asymptotic in (2.1) for z~ >> i and za >> i, we obtain 

zl = a~vGV-lT52; (2 .4)  

I t Qd M \ Q dRM a , v T - O . S e x p I - - . - X ~  ) for T<~ 2 = 10S~ 
Z 2 ----- 

[ a2v. 10-2, 5 exp (-- 0.5) for T > 10 s ~ 
(2.5) 

(2, 6) 

( 2:~k]3/2 {M~M~i/ZeO~01 g~g* ,~ 3,42 ' t0 S. (2.7) 

In obtaining (2.4)-(2.7), the following relationships were used ~6j; 

e,~es g2ga o--Qd/RT, m!  : , 
ze, ~--- g l  N A 

where M i is the molecular (atomic) weight of the i-th particle; gi is the statistical weight 
of the ground state of the i-th particle (g~ = i, g2 = 2, and g3 = 4 17]); N A is Avogadro's 
number; and Qd = 7"10x~ erg.s./g is the dissociation energy. In view of the lack of experi- 
mental data, in (2.4) the Gruneisen coefficient was assumed constant. In this case the Debye 
temperature is expressed in terms of the density in the form 

Oo = O0(P/p0)L (2 .8 )  

where Po = 1.549 is the density of the melt at normal pressure [8]; 0o = 132*K (a method for 
calculating this value is given below). 

Thus, on the basis of the interpolation carried out, from (2.1)-(2.4), we obtain the 
followin~ expressions for the pressure and the internal energy of the melt; 

6n ~'Peo RT [(6V--t):] ~ z~, ] 
p = p c +  eoo/ ,_ l ,+,,v [ --zi l +  zpj  + p'; (2 .9)  
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6R OD 
E = E C +  :I: OD/r_ 1 (Qd RT 1 z~" 

2 M t ' .n, "7 ,q 
( 2 . 1 0 )  

For complete closing of the thermodynamic description in (2.8)-(2.10), it is necessary 
to determine 8o, y, n:, n2, and the functions PC, E C and Pe' Ee" We turn to an examination 

of this question. 

We shall describe the electronic components of state using the dependences [i] 

452zl/3T2(vM)-l/3 [1 @- 7.35_!O--2(zMv)t/2 ]--I 
Pe = 1 -}- 5.45.tO-%-2'3(vJ1)2/3T t + 4.2. tO--~~ (I) dyn/cm 2, 

3 -4- 3.3 �9 10 -5 (z,llv) U3 !TS:gz -32/27 + 3.34.t03) ] ( 2 .11 )  

- -  r T 3  

~.r~ 1012, :=I@ 
3.78-105 (z]Iv)-~ 

[T + 2.46.t0% "1/3 (zMv)--~ 3' 

where z = 14and M = 29.2 are the mean charge number and the molecular weight of NaCI. In 
distinction from [i], the factor ~ is introduced into (2.11), assuring the damping of the 
electronic components with a lowering of the temperature to levels at which the thermal ex- 
citation of the electrons in real media becomes negligibly small. 

At the present time there are no data on the Debye temperature 0o for a melt. To eval- 
uate this quantity we use an indirect method. Let us consider the state of a melt at Po = 
i bar and T = Tmt -- I073=K. 

It is obvious that under these conditions in the'equation of state we can neglect terms 
connected with vaporization, dissociation, and electronic excitation. Taking account of what 
has been said, the internal energy of the melt can be represented directly in terms of the 
energy of the crystalline phase in the form energy of the crystalline phase in the form 

T m c.p In m c.p P + --  Po 
E c = E C + E T + Q o = E c  + E  L o ( v 0 - - V o ) ,  ( 2 . 12 )  

where  t h e  s u p e r s c r i p t s  m and c . p  r e l a t e ,  r e s p e c t i v e l y ,  t o  t h e  m e l t  and the  c r y s t a l l i n e  phase ;  
and Lo = 4 . 8 9 . 1 0 "  e r g s / g  i s  t h e  l a t e n t  e n e r g y  o f  m e l t i n g .  Using t h e  e q u a l i t i e s  of  the Gibbs 
energies at the curve of the melting, 

c.p m F c ' P  ' -  PoVo = Fro+ PoVo 

and expressions for the free energies of the type of (2.2), from (2.12) we obtain an equation 
in the form 

�9 m 

r. 6RT [. i -- exp (-- oc'P/Tmt) %Irm  + 
"~ i--exP(--8~/Tmt ) i--o~P(e~IT~) 

s~'P/Zmt ] 6 R T .  i -- exp (--  8~'P/Tmt ) 

+  --exp(s 'P/Tm0 i 

(2.13) 

From (i.i) for po = 1 bar and T = Tmt we obtain 0~ "p = 1.87 g/cm s, and from (1.6) we 
m 

determine 8 D c'P(0~'P) = 237*K. On the basis of these data, from (2.13) we obtain 8 D = Go = 
132"K. 

In view of the lack of the required experimental data, for determining the Gr~neisen 
coefficient we use the following approach. At T = T t and p = Po, the coefficient of therm- 

al expansion = = 3.67.10 =4 i/deg [8] and the heat Capacity C = 1.148-107 ergs/(g~ [7] 
of the melt are known. P 

Neglecting in (2.10) terms characterizing vaporization, dissociation, and ionization, 
on the basis of the relationship 

Cp = ~E/~T[~ 

we have the expression 
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TABLE 2. 

P, bar 

';; "k22 
i iI / 

1o 0 II, il 
I' 

10-4 
~0 o 

~ 4  

-I02 -/ 0 "~ 
v, cm3/g 
Fig .  2 

p,g/cm 3 2,04 2,25 2,60 3,0i 13,661 4,45 5 ,41  6 ,58  8,00 9,25 t0,7 12,4 

- -  -l-I-I-I-i-l I-l l l  PC' mbar ~ 0,064 0 ,12  0 ,23  0 ,47  0 ,93  1,78 7,t0 

#o a 

TABLE 3 

p. bar 

T, :'K 

v rn, em3/g 

v g, cm3/g 

i0--3 

t075 . 

0,622 

2,95.t06 

i0--2 

1263 

'0,650 

2,32.105 

io--i 

1465 

0,694 

2,23.t0 t 

t725 

0,8t~ 

2457 

1825 

0,971 

t275 

1947 

1,47 

658 

io 

2t53 

2,23 

268 

20 

2347 

2,96 

i30 

50 

2667 

4,83 

42,3 

8z~,7 

2890 

ti,5 

ii,5' 

t =p (eD,,T) } 
'~ : ~q#exp(eD/T ) l 6R T ' ( 2 . 1 4 )  

where q) = OD [exp ( O D / T )  - -  i ] - i .  

From (2.14) for T = Tmt and p = Po, Y ffi 0.865. 

Let us consider the question of the determination of PC. In the region of elongations, 
we shall represent it in the form (1.7). By analogy with [5], we take n = 4/3. As has been 
shown by a postez~oz~ evaluations, this value gives calculated regults corresponding satis- 
factorily to the experimental data on melting and vaporization. Variations of the value of 
n worsen this agreement. In distinction from the crystalline phase, in the present case co 
and Qs are unknown. Therefore, for determination of the parameters A, m, and Pk in ~1.7) for 
the melt we use other conditions: the coefficient of thermal expansion m(Po, Tmt), the energy 

equality (2.12), and the equality (2.9) for T = Tmt , p = Po, and p = 1.549 g/cm 3, setting 

zl = z: = Pe - 0. On the basis of these conditions, the following values of the parameters 
are ohtained; 

A ~---2,2.10 t~ dyn/cmZ ; m ---= 7,42; Pk = ! " 8 5  g/ema" ( 2 . 1 5 )  

In the region of compressions, PC for the melt was constructed analogously to PC for 
the crystalline phase. Here use was made of the experimental data of [i0, 13] and of the 
Thomas--Fermi model of the atom, which is the same for the crystals and the melt. The results 
are given in Tahle 2. 
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Let us dwell on the selection of the values of the parameters n, and na in ~2,1), The 
set (a:; n,) controls the curve of the vaporization. Detailed calculations of this curve 
have shown that the best agreement of the calculated results with the existing experimental 
data on the boiling point [7, 14, 15] as well as with evaluations of the parameters at the 
critical point [7] is obtained for 

al  = J.10 -~, nl ---- :1/3. (2.16) 

A comparison of the results of calculations of the degree of dissociation in an ideal.gas 
state using the methods of chemical thermodynamics [7] with (2.1), (2.9), and (2.10) showed 
that they are in the best agreement with 

a2 = 3.4. l0  S, n2 ---- 2/3. ( 2 . 1 7 )  

T h u s ,  r e l a t i o n s h i p s  ( 2 . 1 ) , ( 2 . 5 ) ,  ( 2 . 9 ) - ( 2 . 1 1 ) ,  and  ( 2 . 1 5 ) - ( 2 . 1 7 ) ,  t o g e t h e r  w i t h  T a b l e  
2, completely determine the state of the melt. 

3. Boundaries of Region of Vaporization 

In view of the lack of expressions for the free energies of the electronic components 
of state, the curve of the boundary of the region of vaporization was plotted by analogy 
with [i, 2]. The results of the calculations are given in Table 3. The vaporization curve 
is shown in Figs. 1 and 2 (the dashed-dot lines are the vaporization curves, the dashed lines 
are the melting curves, and the solid line is the shock adiabat; lines 1-4 are isentropes). 

4. Boundary of Melting Region 

The boundary of the melting region is constructed using the conditions of the equality 
of the Gibbs energies, the pressures, and the temperatures of the crystalline phase and the 
melt. Neglecting the electronic component of state, within the framework of the adopted 
model of NaCI we represent these conditions in the form 

in  -oxp(--om/r) 

It must be noted that the value Qo = 0.54"i0 x~ ergs/g, obtained on the basis of (i.7) and 
(2.15), gives Tmt = 1200~ which differs from the experimental value Tmt = I073~ With a 
rise in the pressure and the temperature the role of this correction decreases rapidly, The 
results of calculations of the melting curve are given in Table 4 and in Figs. 1-3 (dashed 
lines) . 

From Figs. 1 and 2 it can be seen that the calculations in the region of low pressures 
are carried up to the intersection of the melting curve with the vaporization curve. In the 
region of lower pressures the model constructed is not acceptable, since the equations of 
state (i.i) and (1.2) do not describe a direct transition from the crystalline to the sub- 
limed state. 

An analysis of Figs. i and 3 and Table 4 shows that with a rise in the pressure up to 
values of ~i kbar, the melting point does not vary by more than 3%; it increases sharply (by 
almost two times) in the region of pressures 104-106 bar and then approaches some asymptote 
Tmt = 4100~K. The jump in the specific volume decreases with a rise in the pressure, tending 
to zero. This latter circumstance is explained by the existence of an asymptote for the 
temperature, using the Clausius-Clapeyron equation: 

8Tmt/d p = (v r n -  re.P)/@ rn - So.p). 

Since the jump in the entropy always differs from zero, we have the asymptotic indepen- 
dence of the melting point from the pressure. 

Thus, the interpolational model constructed makes it possible to obtain a rather com- 
plete representation of the character of the phase transitions in a wide range of states. To 
illustrate its reliability let us make some comparisons with known data on melting and shock 
compressihility. 

Figure 3 gives a comparison between the melting curve and data calculated using the Si- 
mon formula (dashed--dot line) 

p = A [(T/To) o -- i ] 
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TABLE 4 

p, bar iO - 3  

T, ~ 1075 

c.p, crn3/g 0,536 

v m, cm3/g 

1075 

0,536 

t , 0 2 X  
t 2 8  x l 0  s 

1079 t100 

0,536 0,534 

8, 2" iOai3,~ �9 I0 #. I, i. iO ~,3, i. I0 ~ 

123i 1560 2377 

0,514 0,464 0,392 
I 

3160 

0,314 

5 , 5 - i 0  ~ l , i . t 0 6  1 ,9 .10 ~ 

3500 3851 4058 

0,267 0,222 0, t86 

0,186 

T, ~ 

/4000~-- 

f ;  
,ooo,/ / 

0 JO0 

o 

~,~<~ 

o2 _~ 

~'000 p, bar 

Fig.  3 

10~ 

o 

7 
\ 
Y 

[ ~ kin/see Usur, 
20 4 0  

Fig. 4 

with the Clark parameters [14]: A = 1.67 kbar, To = I073~ C = 2.7, and p <-- 20 kbar. The 
same figure gives calculated data [i0] on the melting curve (i represents calculated points). 
In addition, Fig. 3 gives a calculated shock adiabat (solidline) and analytical data on it 
from [i0] (2 represents experiment). We note that the selection of the characteristic con- 
stants of the equations of state in the present work and in [I0] rested on exactly the same 
experimental data on the melting curve and the dynamic compressibility. The difference is 
that in [I0] an equation of state of the Mie-q3rUneisen type was used, which does not take 
account of vaporization or of other processes taking place with high states, while the cold 
parts of the state were assumed to be identical for the melt and the crystalline phase. The 
regions of elongations and high degrees of compression were excluded from the discussion. 

5. General Analysis of Results 

Let us examine the behavior of the shock adiabat (the heavy line in Figs. 1-3) and the 
isentropes in the region of homogeneous and two-phase states. 

The shock adiahat intersects the boundary between the two-phase crystal-melt states 
(see Fig. 3) at the points (530 kbar; 3480~ and (780 khar; 3700~ 

The results of calculations showed that along the left-hand boundary of the melting, the 
entropy increases monotonically with a rise in the pressure. This means that, with unload- 
ing, the isentrope s go out from the region of the crystalline state into the region of a par- 
tial melt; i.e., there is partial melting. 

At the right-hand boundary, with a rise in the pressure approximately up to 1 kbar the 
entropy remains practically constant, i.e., this segment of the boundary of the two-phase 
region is close to the isentrope. With a further increase in the pressure, the entropy ris- 
es, i.e., with unloading there is the possibility of the complete melting of a particle. 

Qualitatively, there is a different picture at the boundary of the vaporization (see 
Fig. 2). In this case, with a rise of the pressure at the right- and left-hand branches of 
the boundary, there is a rise in the entropy. This is evidence that, with unloading, along 
the isentropes lying to the left of the "critical isentrope, '' particles go over from the 
condensed state into the two-phase state and, with unloading, to the right of the critical 
isentrope the particles go over from the gaseous state to the two-phase state. Another char- 
acteristic is the presence of a sharp point of inflection on the isentropes when they go from 
the region of the condensate into the region of the two-phase state, which is evidence of a 
large discontinuity in the velocity of sound. Evaluations show that the left-hand limit of 
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the velocity of sound is on the order of 103 sm~cec, while the limit on the righ~ is (102- 
101 ) m/sec. This argues that the regions of the start of vaporization are "inert" from a 
gasdynamic point of view. At the right-hand limit of vaporization, the discontinuities in 
the velocity of sound are on the order of i m/sec. The discontinuities of the volumetric 
velocity of sound at the limits of the melting curve are even less. 

6. Refraction of Strong Shock Waves in Air 

Following [I, 2], let us exmmine the question of the region of applicability of the law 
of a doubling of the mass velocity with splits. 

The problem is posed analogously to [i, 2]. A graphical solution of the problem is 
shown in Fig. 4 (legend same as in Figs. 1 and 2; the numbers 1 and 2 relate to the adiabats 
of NaCI and air, respectively), and the results are given in Fig. 5 (the solid line relates 
to NaCI, the dashed line to granite, and the dashed--dot line to Ug r = 0.5Usu ; the number 
i denotes the region of partial melting). The connection between the velocity of a split- 
off u and the mass velocity in the arriving wave u is represented by the following ap- 

sur gr 
proximate dependences : 

/o,5 
Ug r = [0 .39 -t- 0,396 Usu r for Ug r ~ t ,88 ,  

where u is in km/sec. 
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DYNAMIC STRESS CONCENTRATION IN GLASS-FIBER-REINFORCED PLASTIC 

A. A. Ermak and A. M. Mikhailov UDC 539.3+539.4 

INTRODUCTION 

In this paper the problem of stress concentration around defects is investigated. The 
discrete model of glass-fiber-reinforced plastic [i, 2] is used, in which it is assumed that 
the fibers work on expansion and the bonding on shear; the inertia of both components is tak- 
en into consideration. 

w Let the glass-fiber-reinforced plastic consist of an infinite number of fibers of 
width h with their number indicated by integers J. The fibers alternate with layers of the 
bonding of width H. The y axis is parallel and x axis perpendicular to the fibers. The dis- 
placement of the bonding along the y axis is denoted by vj(x, y, t); the index j shows that 

the point under investigation lies between the j-th and (j + l)st fibers at a distance x from 
the j-th (0~.x~H); t is the time. The displacement of the fiber is denoted by uj(y, t). 
Hooke's law has the following form: 

ffj(y, t)= EOuj(y, t)/Oy, ~(x, y, t)= GOvj(x, y, t)/Ox; ( l . 1 )  

w h e r e  o .  a n d  E a r e  t h e  n o r m a l  s t r e s s  and  t h e  Young m o d u l u s  i n  t h e  f i b e r  and  ~ .  and  G a r e  t h e  
3 3 

tangential stress and the shear modulus in the bonding. 

It is shown in [2] that for zero initial conditions the behavior of the above system is 
described by the equations 

C.O~ d~ zz~ " + + uj% ) = 0, 

~ = G/E, co ~ = Hh sh ~/~, ~ = pH/c~, 

a = p~cos/~2c~ + 2ch ~, c~ = E/PD c~ = G/p~, 

(1.2) 

where s index L denotes the Laplace (time) transform of the desired quantities, p is the 
transform parameter, and ~ and ~2 are the densities of the fiber and bonding materials, re- 
spectively. After determining u~, the displacement in the bonding is determined by the for- 
mula 

(i 

and the stresses o~ and r~ are determined in accordance with (i.I) and (1.3). The solution 
3 3 

of (1.2) that vanishes at y ~ ~ has the form [2] 
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